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Abstract. An open quantum model of a small system strongly interacting with a
thermodynamic bath is suggested which binds cyclically, upon working in isothermal conditions,
particles (atoms, molecules or molecular groups) to bound states. The latter may be even
energetically disadvantageous. The effect is due to relaxation processes in intermediate states
upon combined scattering of the particles on the system and can be viewed as an induced
self-organization described here by a linear theory.

1. Introduction

Previously, we have suggested a microscopic quantum model (swing or fish-trap model)
whose kinetic behaviour as determined from highly accurate quantum kinetic equations as
well as a simple physical reasoning has an unexpected character from the point of view of the
standardmacroscopicthermodynamics [1, 2]. Namely, it was proved that owing to a strong
interaction with a bath, microscopic systems are in principle able to transfer, in a cyclic
process, particles from a set of particle reservoir states to a more limited set of states with
contingently even slightly higher energy. (The particle reservoir is not to be mistaken for the
standard thermodynamic bath.) The reverse process (scattering) is very ineffective and, in
the most favourite situations, nearly impossible. This strange behaviour of the model seems,
at first sight, to be incompatible with standard kinetic approaches. In the latter theories,
time development of any system kept in isothermal conditions is, with increasing time and
upon assuming weak coupling to the thermodynamic bath, expected to decrease its free
energy, i.e. nearly the total energy at low temperatures. Although unexpected, such a type
of behaviour is possible, asssuming the interaction with the thermodynamic bath underlying
some bath-assisted transversal relaxation processes involved, in energy units, is appreciably
stronger (i.e. more effective) than energy splittings caused by some less important terms of
the Hamiltonian of the isolated system only. The latter splittings also determine duration
of the scattering events of particles on the system in question. In other words, the above
tendency to the thermodynamically unexpected asymptotic state of the scattered particles
may be due to a proper combination of several features.
• Long-lasting scattering events (a situation typical of heavy masses of impinging

particles).
• Internal structure of the scatterer (central system) among levels of which there are

strong relaxation processes owing to its coupling to the thermodynamic bath. One should
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realize that such strong relaxation processes are omittedby definitionin usual weak-coupling
approaches.
• A special kind of instability of order of levels of the central system upon accepting the

scattered particles which allows the above relaxations in the intermediate scattering states.
The above behaviour reminds us of the Maxwell daemon, working here, however, in

isothermal conditions. The very idea is generalized later to treat processes with joining
and mutual coupling of pairs of particles (atoms, molecules etc) with the active role of the
open quantum system, i.e. our central system coupled to both the thermodynamic bath and
a reservoir of particles. The simultaneous scattering of these pairs on the central system
becomes possible at finite particle concentrations and the process then converts to nothing
but a kind of chemical reaction stimulated by the central system. Thus we can get a strong
catalytic effect of the presence of such a microscopic quantum system in the reservoir of
particles in question.

One should add a comment here concerning both possible applications and basic features
of the process to be discussed. In standard investigations of scattering processes, the question
of relaxation in intermediate states appears very infrequently as the scattering process itself
is usually, or is assumed to be, very fast. On the other hand, all chemical reactions of, for
example, heavy organic molecules are in fact a type of scattering process which is, owing to
heavy masses of the components, very slow. In such situations, the relaxation processes in
intermediate states of the scatterer, in particular in any catalytic system making the chemical
reaction in question practically possible, can hardly be ignored.

Next, heavy (in particular) organic molecules and their complexes are objects which
can have a very long lifetime irrespective of the fact that their native states or those
of intermediate products during their preparation often do not correspond to quantum-
mechanical ground states but rather to excited states of all the complexes in a given situation.
If chemical reactions leading to formation of such complexes were usual equilibrium
(passive) reactions in, for example, solutions, their yield would be definitely very low.
Thus, active elements (enzymes) catalysing such reactions (scattering channels) are needed
which, however, need energy to be incorporated in the reaction products as excited states of
the complex. In particular, in reactions occurring in solutions, no sufficiently concentrated
sources of such energy are available. The present model provides a simple microscopic
model showing how, in contrast with the equilibrium thermodynamics, the delocalized
thermal energy can serve as a source of the required energy portion in such endothermic
reactions. No real contradiction with thermodynamics is expected as the presence of systems
modelled here in real solutions simply leads to an increase of the chemical potentials, i.e.
the reaction yield of the reaction products.

Because the problem is technically quite complicated, we shall present its discrete form.
This means that we assume two types of particles which can move on a discrete lattice.
Designatingm, n, . . . the lattice points, the creation operators of the two types of particles are
c
†
m andg†m; cm andgm are the corresponding annihilation operators. Operators corresponding

to different types of particles commute. As for the commutational relations of creation
and annihilation operators of the same type of particles, we can avoid their specification
because they are not needed for the principles of activity of our model. However, in order
to be specific, we shall assume them to be Fermi-type anticommutational relations. This
automatically does not allow two identical particles to reach the same site. Reserving site
0 for our central system (to be specified later), the reservoir of particles distributed on sites
outside the origin can be described by, for example, the Hamiltonian

Hr =
∑

m,n(6=0)

[Imnc
†
mcn + Jmng†mgn] + V

∑
m( 6=0)

c†mcmg
†
mgm. (1)
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It is worth noting in (1) that we have allowed the c and g particles to interact with the on-site
interactionV . For |V | large enough, the resulting bound states of the particles (lying, for
V > 0 or V < 0, above or below the band of scattering states) become well localized. This
is meant in the sense of a prevailing probability of finding the c and g particles on the same
site though not on one specific site in space; the bound c–g complex can be quite extended
in space. That is why we can then roughly say that, for example,c

†
mg
†
m creates (irrespective

of the sign ofV ) a bound c–g state at sitem. (1) is thus a Hamiltonian of the famous
Hubbard type. We shall, however, not investigate it in detail as it is not our aim here. It is
worth mentioning that we have not, for the sake of simplicity, introduced the interaction of
particles of the same kind (c–c and g–g coupling).

As has already been pointed out, we reserve site 0 for our central system. This system
we take as a two-level (molecule, molecular group etc) system with states designated as|d〉
and|u〉. The central system is assumed to be joined with the site 0 accessible to both types
of particles. The corresponding energies of the above two states|d〉 and|u〉 are assumed to
be−ε/2 and+ε/2, respectively, provided that the site 0 contains at most one particle of
any of the two types. In the case when both c and g particles appear on site 0, we assume
the energies to be reversed. This is the simplest model describing instability, upon adding
particles, of the two levels of the central system. The instability can in reality be due to a
change of topology of the central system due to appending both c and g particles to it. The
corresponding Hamiltonian reads

Hcs= ε

2
[|u〉〈u| − |d〉〈d]| ⊗ [1− 2c†0c0g

†
0g0]. (2)

Now, we should append the central system to the reservoir allowing it to accept as well
as return particles to it. Once we do this, we introduce scattering processes of the particles
on the central system; the c and g particles can scatter individually as a consequence of, for
example, the pair forces between the corresponding particle and the central system. These
terms are given by the first term in (3) later. However, even when neglecting inhomogeneity
in space introduced by the central system, elementary processes coming from, for example,
the pair c–g interaction appear where c and g particles hop simultaneously. In (1), we
have omitted such processes for technical simplicity. Here, in scattering on the central
system, we shall, however, take the (presumably) dominating portion of them into account
as they yield the desired effect. In order to justify this, one should also realize that the very
amplitude of such processes could, owing to the above inhomogeneity of the space because
of the presence of the central system, become dependent on the distance from the central
system. Thus, we have the term in the total Hamiltonian describing scattering of particles
on the central system in the form

Hr−cs=
∑
m(6=0)

[Im(c
†
mc0+ c†0cm)+ Jm(g†mg0+ g†0gm)] ⊗ |d〉〈d|

+
∑
m(6=0)

Km(c
†
mg
†
mg0c0+ c†0g†0gmcm)⊗ |u〉〈u|. (3)

One should mention that amplitudes of all the above scattering processes could in principle
depend on the state of the central system involved. This is in fact one of the crucial points
in our model. One can understand it by realizing that different states of the central system
might mean different topology. In particular, in (3), we have assumed that the scattering
processes, where the c and g particles scatter on the central system individually, only take
place provided that the central system is in its ‘down-state’|d〉. Similarly, we have also
assumed that the pair scattering processes only exist when both scattering particles are on
the same site and the central system is in the ‘up-state’|u〉.



5248 V Čápek

The important point is that, as usual in statistical thermodynamics, we should divide
the whole object investigated into the system and thermodynamic bath. In order to
comply with the standard terminology, we define the system as our central system plus
the reservoir of particles including their interaction. Thus the Hamiltonian of the system
reads as

HS = Hr +Hcs+Hr−cs. (4)

Now, the question concerns the Hamiltonians of the thermodynamic bathHB and that
of the system–bath interactionHS−B. Their details should not be very important provided
that the relaxation processes assumed are really present for the model chosen. Thus, we
choose the simplest form ofHB,

HB =
∑
k

h̄ωkb
†
kbk (5)

and

HS−B = 1√
N

∑
k

h̄ωk{Gk[|u〉〈d| + |d〉〈u|] + gk[c†0c0+ g†0g0]}(bk + b†−k). (6)

Clearly, this is the model of harmonic phonons representing the bath, withk andωk = ω−k
being the wavevectors and corresponding phonon frequencies. As forHS−B, we assume
a form linear in the phonon creationb†k and annihilation operatorsbk which is able both
to cause up- and down-relaxations (|u〉 ↔ |d〉 transitions) in the central system (terms
proportional toGk) and to cause on-site dephasing at site 0, which is important for
transversal relaxation (dephasing) processes. Finally,N , Gk = G∗−k and gk = g∗−k are
the number of phonon modes (turning to infinity in the bath thermodynamic limit), the
coupling constant of the central system and that of the carriers at site 0 to the bath of
phonons, respectively.

2. How the system works

Here, before proceeding to a more detailed theory, we should first of all explain why the
central system works as a fish-trap or (in this case isothermal) Maxwell daemon. In order
to understand this, we only need a simple physical reasoning combined with the above two
main features of the model, namely the following.
• The central system can (as follows from (3) and as it could be in Nature for, for

example, topological reasons) accept as well as return both c as well as g particles from and
to the reservoir individually (in the uncoupled states) provided that it is in its down-state
|d〉. Similarly, it can accept or return the c as well as g particles by pairs in their bound
state only when it is in its up-state|u〉. In reality, these exclusive possibilities could be
replaced by, for example, dominating ones.
• The down-state of the central system (otherwise its ground state) becomes unstable

upon accepting, to site 0 joined with the central system, both one c and one g particle.
In other words, the up-state|u〉, with both c and g particles at site 0 appended to the
central system, becomes the ground state of the central system. (Here, we have for a
while considered the central system with site ‘0’ as switched off from both the particle
reservoir and the thermodynamic bath, i.e. we have taken it with Hamiltonian (2).)Vice
versa, whenever any (or both) of these particles leaves site 0,|d〉 again becomes the stable
ground state.

In addition, we have the possibility of longitudinal relaxation processes between the up-
and down-states of the central system. Attention should be turned to the fact that quantum
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mechanical amplitudes for the in- and out-scattering (appending and releasing) processes
of the c and g particles on the fixed central system are assumed symmetric. This is a
consequence of hermicity of our Hamiltonian (see (3)). The final asymmetry of the process
(i.e. production of even energetically less advantageous bound states of c and g particles)
is due to a combination of the above specific form of (3) with the|u〉 ↔ |d〉 relaxation
asymmetry. The latter is due to spontaneous processes with respect to the thermodynamic
bath. Hence, no model treating the thermodynamic bath on a classical level (replacing it
by, for example, a stochastic field) can yield the same desired effect. Similarly, switching
off the bath immediately stops the process. That is why we call the system anisothermal
Maxwell daemon having in mind differences as well as similarities with the original Maxwell
daemon [3].

Let us now assume an arbitrary initial state of the system (i.e. the central system
as well as the particle reservoir). We shall (as later specified quantitatively) limit our
attention to the situation with very low values ofIm, Jm and Km. For simplicity, let
us assume that the previous cycle has just finished, i.e. the central system has already
returned to its ground state|d〉 and there is neither a c nor g particle at site 0. Because of
Hr−cs in (3), the c and g particles can now occasionally appear on site 0, too. Owing
to efficient transversal relaxation (processes mediated by terms proportional togk in
HS−B in (6)), the particle phases are lost very fast, i.e. no additional stabilization of
the down-state of the central system, owing to back and forth transitions of the c and
g particles between site 0 and reservoir, appears. One must add here that when one (say
c) particle already resides on site 0, transfer of the second (g) particle is energetically
quite disadvantageous as it requires additional energyε > 0. This in addition to low
values ofIm and Jm, is what can make this process relatively slow. However, it does
not forbid simultaneous appearance of one c and one g particle at site 0 at all. The
point is that no energy conservation requirement enters this process; the transfer in our
situation is just virtual (being caused byHr−cs). It is of the same type as that bringing
(although with different probabilities) the particle in an arbitrarily asymmetric dimer to both
sides whenever there is a transfer (resonance or hopping) term in the Hamiltonian (see
in this connection terms proportional toIm and Jm in Hr−cs in (3)) connecting the two
dimer sites.

As soon as both particles virtually attach to the central system, the latter becomes
energetically unstable and, unless one of the particles leaves site 0 in between which is
a very slow process, it turns to the up-state with lower energy−ε/2. This, however,
makes both the particles unable to leave the central system individually but allows them to
leave it simultaneously, by a transfer to the same site (saym). In our situation (owing
to high values of|V | in Hr (see (1))), this practically means leaving it in the bound
state located atm. Again the transversal relaxation processes break any stabilization
of the up-state of the central system by a partial simultaneous presence of the particles
on site 0 as well as, already in the bound state, in the reservoir. Leaving site 0
by the pairing of both particles as a consequence ofKm 6= 0, making this process
possible even atT = 0 is again a process which does not conserve energy. Thus,
the process must be again looked at as only virtual and treated in a non-trivial manner.
For small |Km|, it may take a long time before such a simultaneous hop of our pair of
particles appears. Once it really happens, however, the central system again becomes
unstable and turns again, with the help of the interaction with the bath, to the down-
state. This completes the cycle and the system is ready to accept a new pair of unbound
particles from the reservoir. In what follows, we shall try to model this process on a
quantitative footing.
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3. Asymmetry by perturbational arguments

The m, n(m 6= n) ↔ m = n transitions in fact form a kind of scattering process with
bath-assisted relaxation processes in intermediate states. We want to treat them first by
perturbational arguments. Let us assume that we have initially one c particle at sitem

and one g particle at siten, that the central system is in its down-state (with site 0 empty
to be ready to accept particles) and that the reservoir is in its ground state. We calculate
the probability of finding, in the final state, the two (c and g) particles in a bound state
located at siter and the central system in the same initial state|d〉, ready to accept a
new pair in question and start the cyclic process again. The latter siter we presume
empty so as to be able to accept the pair in question. As a perturbation, we take all the
terms in the Hamiltonian which may cause particle transfer and relaxation. These are the
sumHr−cs+ HS−B. For simplicity of arguments, we omit explicitly the above dephasing
(transversal relaxation) processes, i.e. we putgk = 0 inHS−B in (6). Let us, however, stress
here that in the next section, we again need and assumegk 6= 0. This is also so for the
discussion of the total energy balance of the cyclic process.

We call the transition just described the forth process. We realize that intermediate
steps in this process, which are due toHr−cs only, may be treated by simply solving the
coherent back-and-forth oscillations in symmetric or asymmetric dimers. A typical time
for bringing the c particle to site 0 first and only then transferring the g particle is then
h̄/(2|I |) + h̄/√ε2+ 4J 2. (The second step requires the excitation energyε. Here and
later, for simplicity we fully disregard the problem of yield of the coherent transfer in the
asymmetric dimer.) Similarly, for the reversed order of the elementary steps. Thus, the
typical time for the forth transition as a whole reads

Tforth ≈ Min

[
h̄

2|Im| +
h̄√

ε2+ 4J 2
n

,
h̄

2|Jn| +
h̄√

ε2+ 4I 2
m

]
+ h̄√

V 2+ 4K2
r

+ 2T↓ (7)

where

T −1
↓ ≡ 0↓ ≈

2π

Nh̄

∑
k

|Gkh̄ωk|2δ(ε − h̄ωk)[1+ nB(h̄ωk)] (8)

is the downwards (in energy) relaxation time of the central system in lowest-order
perturbation (inHS−B) theory. There are two such times in (7) as there are two downward
relaxation processes involved. In (8),nB(z) = [exp(βz) − 1] is the Bose–Einstein–Planck
distribution for phonons. When the temperatureT = (kBβ)

−1 turns to zero,0↓ remains
non-zero, i.e.T↓ is finite in our case. In (8) and later, we automatically assume in all
formalae of the type 1/N

∑
k . . . that the thermodynamic limit of the bathN → +∞ is

already performed. This allows us to get rid of the Poincaré cycles [4]. Thus, for small
|Im|, |Jn| and |Kr|, Tforth is practically given by times required for the particle transfer to
and from the central system to the respective sites.

On the other hand, let us now investigate the reverse process with the bath initially in
the ground state of the bath again. Treating it in the same way would, however, yield for
the typical transfer time

Tback≈ Min

[
h̄

2|Im| +
h̄√

ε2+ 4J 2
n

,
h̄

2|Jn| +
h̄√

ε2+ 4I 2
m

]
+ h̄√

V 2+ 4K2
r

+ 2T↑ (9)

where

T −1
↑ ≡ 0↑ ≈

2π

Nh̄

∑
k

|Gkh̄ωk|2δ(ε − h̄ωk)nB(h̄ωk) (10)
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is the upwards (in energy) relaxation time of the central system in lowest-order perturbation
(in HS−B) theory. At zero temperature, however,T↑ would turn, according to (10), to
infinity, i.e. the process would be fully prohibited. In fact, this is not so but the result shows
that the reverse process should be investigated to higher orders of perturbation theory. In
this case, we obtain at very low (formally zero) temperature that

Tback≈ Min

[
h̄

2|Im| +
h̄√

ε2+ 4J 2
n

,
h̄

2|Jn| +
h̄√

ε2+ 4I 2
m

]
+ T ′ (11)

where, already in the zero-temperature limit for the thermodynamic bath,

(T ′)−1 = 2π

h̄

∑
k,k′
|T (3)|2δ(V − h̄ωk − h̄ωk′) (12)

is the lowest (according to the probability amplitude, the third) order perturbational
contribution to a typical time of the process starting with the c–g pair of the particles
at site r with the central system in state|d〉 and finishing with both particles at site 0
and the central system in the same state, having the bath initially in its ground state. The
corresponding third-orderT -matrix element in (12) reads

T (3) = Gkh̄ωk√
N

1

V − h̄ωk′ + iη
Kr

1

−ε − h̄ωk′ + iη

Gk′h̄ωk′√
N

. (13)

Here η is a positive infinitesimal. From this, we obtain that by the order of magnitude,
(T ′)−1 ≈ |G|2(Kr/(ε − V ))20↓|T=0. HereG is a typical value ofGk. Arguing by the
weakness of the coupling to the bath (|G| � 1) as well as by the smallness of the
|Kr/(ε − V )| ratio, one easily obtains that at zero temperature (and correspondingly at
low temperatures in general)

Tforth� Tback. (14)

This fully illustrates the origin and magnitude of the effect of the back–forth asymmetry of
the transition (scattering).

4. Kinetic treatment

Having thus illustrated the effect in the formal zero-temperature limit, let us now return to
such finite temperatures at which the lowest-order bath-assisted transfer rates in the backward
direction have a chance to dominate over the above third-order processes in (12) and (13).
So we are justified in omitting the latter processes. The standard Markovian (Pauli-master-
equation (PME) [5, 6] like) theory with second-order transfer rates cannot be rigorously used
as there are coherent channels in (4) (see (3)) involved. That is why we use the Nakajima–
Zwanzig [4, 7–9] form of the time-convolution generalized master equations (TC-GME). In
the long-time asymptotics, the theory then turns to a form formally reminiscent of PME,
however. We shall, for reasons mentioned later, work with the projector suggested by Peier
[10]. In order to make the technique simpler, we assume only two sites (1 and 2) in the
particle reservoir and only one c and one g particle. That means that we substitute our
Hamiltonian of the system (central system and particle reservoir)HS in (4) (with (1), (2)
and (3)) by

HS = V (c†1c1g
†
1g1+ c†2c2g

†
2g2)+ I (c†1c0+ c†0c1+ c†2c0+ c†0c2)⊗ |d〉〈d|

+J (g†1g0+ g†0g1+ g†2g0+ g†0g2)⊗ |d〉〈d|
+K(c†1c0g

†
1g0+ c†2c0g

†
2g0+ c†0c1g

†
0g1+ c†0c2g

†
0g2)⊗ |u〉〈u|. (15)
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We consider other possible terms to be negligible here. Hamiltonian (15), as well as the
total HamiltonianH = HS + HB + HS−B (with HB andHS−B given by (5) and (6)) are
symmetric with respect to the 1↔ 2 interchange. Thus the kinetics in symmetric and
antisymmetric c–g states are independent. In fact, there is no kinetics for the antisymmetric
states in our simplified model. That is why we shall only treat symmetric states.

There are just five symmetric c–g particle states forming a basis in our particle Hilbert
space:

|1〉 = 1√
2

[c†1g
†
2+ c†2g†1]|vac〉

|2〉 = 1√
2

[c†1g
†
1+ c†2g†2]|vac〉

|3〉 = 1√
2

[c†1+ c†2]g†0|vac〉

|4〉 = 1√
2

[g†1+ g†2]c†0|vac〉

|5〉 = c†0g†0|vac〉. (16)

Here |vac〉 is the vacuum state of the particles. As for the central system, we have|u〉 and
|d〉 states only, i.e. together we have ten states of our system (central system and reservoir
of particles)|j, u〉 = |j〉 ⊗ |u〉 and |j, d〉 = |j〉 ⊗ |d〉, j = 1, 2, . . . ,5. Working with the
total density matrix of the systemρ(t) with the Argyres–Kelley projector [11] but otherwise
as below would thus lead to a set of(102 =) 100 linear integrodifferential equations for a
total of 100 elements ofρ(t). With the time-convolutionless formalism as (for a slightly
different model and problem) in [2], that would again yield the set of 100 linear equations,
although this time only differential equations. The problem would require the calculation
(by hand) of 104 coefficients of the set as functions of time. Together with technical reasons
connected with the scope of this paper, this is why we refrain from using this formulation
here (although it contains more information) and work in the formalism and with the Peier
projector ([10]) mentioned previously. This leads us to the set of ten TC-GME of the form

d

dt
Pip(t) =

∑
jq(6=ip)

∫ t−t0

0
[wip,jq(τ )Pjq(t − τ)− wjq,ip(τ )Pip(t − τ)] dτ + Jip(t, t0)

i, j = 1, 2, . . . ,5, p, q = u or d. (17)

HerePip(t) = ρip,ip(t) =
∑

λ ρ
S+B
ipλ,ipλ(t) is the probability of finding, at timet , the system

in stateip (i.e. the c and g particles in statei and the central system in statep = u or d),
with the thermodynamic bath being in its arbitrary state.ρS+B is the density matrix of the
system (central system plus particles) as well as bath and summation over Greek indices
designates henceforth that over the states of the thermodynamic bath. As for the memory
functionsw...(τ ) and the initial condition termJip(t, t0), we have exact formulae ([9]):

wip,jq(τ ) = −
∑
λµν

[Le−i(1−P)Lτ (1− P)L]ipλ,ipλ,jqµ,jqνρ
0
µν

Jip(t, t0) = −i
∑
λ

[Le−i(1−P)L(t−t0)(1− P)ρS+B(t0)]ipλ,ipλ. (18)

HereP is the Peier projector defined as

[P . . .]ipµ,jqν = δip,jqρ0
µν

∑
λ

[. . .]ipλ,ipλ (19)
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with ρ0 being an arbitrary matrix with indices of states of the bath except for the idempotency
condition ∑

µ

ρ0
µµ = 1. (20)

For simplicity, we shall as usual limit ourselves to such a class of initial conditions that
ρS+B is initially separable, i.e.(ρS+B)ipµ,jqν(t0) = ρ0

µνρip,jq(t0) whereρ0
... (the initial density

matrix of the bath) is identical with that in (19) and (20) andρip,jq(t0) (the initial density
matrix of the system) is diagonal,ρip,jq(t0) = Pip(t0)δip,jq . Then(1−P)ρS+B(t0) = 0, i.e.
the initial condition term disappearsJip(t, t0) = 0. This simplifies the analysis.

As for the memory functionswip,jq(τ ), we can start expanding them in the perturbation
series in those terms in the HamiltonianH = HS + HB + HS+B (i.e. in HS in (15) and
HS+B in (6)) which cause transitions among the above states. To finite order, many of the
memory functions then turn to zero. We shall keep only those which are non-zero already
in second-order perturbation theory. These are first of all

wju,jd(τ ) ≈ w5d,5u(τ ) ≈ 2

N

∑
k

|Gk|2ω2
k

{
nB(h̄ωk) cos

((
ε

h̄
− ωk

)
t

)
+[1+ nB(h̄ωk)] cos

((
ε

h̄
+ ωk

)
t

)}
j = 1, 2, . . . ,4

wjd,ju(τ ) ≈ w5u,5d(τ ) ≈ 2

N

∑
k

|Gk|2ω2
k

{
nB(h̄ωk) cos

((
ε

h̄
+ ωk

)
t

)
+[1+ nB(h̄ωk)] cos

((
ε

h̄
− ωk

)
t

)}
j = 1, 2, . . . ,4. (21)

Here, nB(z) = [exp(βz) − 1]−1 (β = 1/(kBT )) is the Bose–Einstein distribution for
phonons. These expressions are pleasant in the sense that they decay to zero with
increasing time (yielding well integrable functions) after taking the thermodynamic limit
of the bathN → +∞. As for other memories which are non-zero to second order, these
arew1d,3d(τ ) ∝ J 2, w3d,1d(τ ) ∝ J 2, w1d,4d(τ ) ∝ I 2, w4d,1d(τ ) ∝ I 2, w2d,3d(τ ) ∝ J 2,
w3d,2d(τ ) ∝ J 2, w2d,4d(τ ) ∝ I 2, w4d,2d(τ ) ∝ I 2, w2u,5u(τ ) ∝ K2, w5u,2u(τ ) ∝ K2,
w3d,5d(τ ) ∝ I 2, w5d,3d(τ ) ∝ I 2, w4d,5d(τ ) ∝ J 2 andw5d,4d(τ ) ∝ J 2. Their second-order
explicit expressions are simple. One must, however, note that the latter do not properly
decay to zero. The proper decay is restored only if one includes higher-order contributions
partially summed up to infinity [12]. Even including only those intermediate states which are
identical with the initial and final states indicated by indices of the memories (for example,
|4d〉 and |5d〉 states upon calculatingw5d,4d(τ )), i.e. working as in a dimer, is not a simple
task [13, 14]. (For that, on the other hand, one needs justification to be able to work so.
That is the point where the dephasing owing togk 6= 0 again enters the game, destroying
phase relations among individual states|j, d〉 and |j, u〉 existing in eigenstates ofHS.) We
shall assume that the above memories were calculated in this manner but utilize the fact
that we do not, on the other hand, need explicit expressions for such memories.

Therefore one can solve (17) using some of the mathematical techniques available.
Here, our problem is to discuss the long-time asymptotics of the solution only. Taking the
limit t →+∞ in (17) analytically, one obtains the set of linear algebraic equations

0=
∑

jq(6=ip)
[Wip,jqPjq(+∞)−Wjq,ipPip(+∞)]

Wip,jq =
∫ +∞

0
wip,jq(τ ) dτ i, j = 1, 2, . . . ,5, p, q = u or d. (22)
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The rank of the system of 10 equations (22) equals nine. Together with the condition

5∑
j=1

∑
q=u,d

Pjq(+∞) = 1 (23)

(22) provides the set of 10 linearly independent equations determining the asymptotic state
of the system. An explicit form of some of theWip,jq coefficients is easy to find from the
above formulae. In particular, within the above accuracy,

0↑ ≡ Wju,jd =
∫ +∞

0
w5d,5u(τ ) dτ

= 2π

h̄N

∑
k

|Gk|2(h̄ωk)2nB(h̄ωk)δ(ε − h̄ωk) j = 1, 2, . . . ,4

0↓ ≡ Wjd,ju =
∫ +∞

0
w5u,5d(τ ) dτ

= 2π

Nh̄

∑
k

|Gk|2(h̄ωk)2[1+ nB(h̄ωk)]δ(ε − h̄ωk) j = 1, 2, . . . ,4. (24)

These memories well fulfill (to second order) the unrenormalized detailed balance condition
(DBC)

0↑
0↓
= e−βε. (25)

As for other coefficientsWip,jq =
∫ +∞

0 wip,jq(τ ) dτ which is non-zero here, we do not need
the above higher-order expressions for memorieswip,jq(τ ). We only parametrize the result
as

W1d,3d = P W3d,1d = P ′ W1d,4d = Q W4d,1d = Q′ W2d,3d = S
W3d,2d = S ′ W2d,4d = T W4d,2d = T ′ W2u,5u = F W5u,2u = F ′
W3d,5d = G W5d,3d = G′ W4d,5d = H W5d,4d = H ′. (26)

All these quantities should be (as probability rates in the Markovian limit) positive. On
the other hand, they neednot fulfil any simple DBC. The reason is that they arenot due
to bath-assisted transitions but rather due to simple constant overlap (hopping or transfer)
integrals in the Hamiltonian. This may be easily shown in an asymmetric dimer case [15]; as
a consequence, the ratiosP/P ′, Q/Q′ etc (as well as the valuesP , P ′ etc) remain definitely
finite and non-zero in the zero-temperature limit. Therefore, one can write (22) explicitly.
Instead, in order to avoid (for our qualitative reasoning) useless clumsy expressions, we
shall first specify our regime.

We assume that, owing to the previously assumed small values of|I |, |J | and |K|,
0 ≡ 0↓ � F � P, P ′,Q,Q′, S, S ′, T , T ′, F ′,G,G′, H,H ′ � 0↑. (27)

The first inequality together with the last ensures thatF determines the transfer rate
5d → 5u→ 2u→ 2d which is due to the existence of our central system. As we shall see
later, the second inequality ensures effectiveness of the latter. In particular, it helps us to

make the transfer channel 3d (and similarly 4d)
G′→ 5d

0→ 5u
F→ 2u

0→ 2d dominate over

the direct one mediated byS, i.e. 3d
S→ 2d (and similarlyT )—see (26). In other words,

it helps us to make the effect of the presence of our ‘daemon’ sufficiently pronounced.
The third inequality is, for given constant values of|I |, |J | and |K|, a limitation to low
temperatures. We use here the fact that0↑ gives the relaxation rate owing to absorption
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of bath excitations which disappear in the zero-temperature limit (compare with (25)). We
easily obtain from (22) by setting formally0↑ = 0 that

P1u(+∞) = P3u(+∞) = P4u(+∞) = 0. (28)

The remaining seven equations of (22) read

−P ′ −Q′ 0 0 P Q 0 0
0 −0 − F ′ 0 0 0 F 0
0 0 −S ′ − T ′ S T 0 0
P ′ 0 S ′ −P − S −G′ 0 0 G

Q′ 0 T ′ 0 −Q− T −H ′ 0 H

0 F ′ 0 0 0 −F 0

0 0 0 G′ H ′ 0 0 −G−H



·



P1d(+∞)
P2u(+∞)
P2d(+∞)
P3d(+∞)
P4d(+∞)
P5u(+∞)
P5d(+∞)


= 0. (29)

Owing to (27), the matrixA of (29) splits well intoA = A0 + A1 where the ‘big’ matrix
A0 has all elements zero except for−A22 = A32 = A67 = −A77 = 0. Correspondingly,
the ‘small’ matrixA1 has only zero or small elementsP, P ′,Q, . . . , H . Looking for the
solutionX of the problem(A0 + A1)X = 0 (X is the column of asymptotic probabilities
P...(+∞) in (29)) in the form ofX = X0+X1+X2+ · · · with X1 ∝ A1, X2 ∝ A2

1 etc, we
find the set

A0X0 = 0 A1X0 = −A0X1 . . . . (30)

From the first equation of (30), we obtain

X0 ≈



P1d(+∞)
P2u(+∞)
P2d(+∞)
P3d(+∞)
P4d(+∞)
P5u(+∞)
P5d(+∞)


=



a

0
b

c

d

e

0


. (31)

Here a, b, c, d and e are still arbitrary. The remaining equations can be obtained by
multiplying the second equation of (30) from the left by five different left-eigenvectors
of A0. This yields four independent equations:
−P ′ −Q′ 0 P Q 0

0 −S ′ − T ′ S T F

P ′ S ′ −P − S −G′ 0 0
Q′ T ′ 0 −Q− T −H ′ 0



a

b

c

d

e

 = 0. (32)

Therefore,

a ≡ P1d(+∞) = K · F [QT ′(P + S +G′)+ PS ′(Q+ T +H ′)]
b ≡ P2d(+∞) = K · F [P ′(Q+ T +H ′)(S +G′)+Q′(P + S +G′)(T +H ′)]
c ≡ P3d(+∞) = K · F [S ′(T +H ′)(P ′ +Q′)+ P ′Q(S ′ + T ′)]
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d ≡ P4d(+∞) = K · F [T ′(S +G′)(P ′ +Q′)+ PQ′(T ′ + S ′)]
e ≡ P5u(+∞) = K · (P ′ +Q′)[G′S(T +H ′)+ T ′H ′(S +G′)]

+(S ′ + T ′)[G′P ′Q+H ′Q′P ]. (33)

The multiplicative positive constantK (depending onF ) in (33) enters all constantsa, . . . , e
and its value is determined by the normalization condition (23). This means, with our
approximations and regime (27),a + b + c + d + e = 1.

We mention the different role played by the above transfer rateF for different
coefficients in (33). ForF = 0, we, for instance, find thatP5u(+∞) = 1 with all other
asymptotic probabilities equal to zero. This is, however, not the case we discuss here.
Instead, let us assume thatF is sufficiently large (in the sense of the second inequality in
(27)). Then owing to the increase ofK with increasingF , e ≡ P5u(+∞) turns to zero and
we get

a ≡ P1d(+∞) = K ′ · [QT ′(P + S +G′)+ PS ′(Q+ T +H ′)]
b ≡ P2d(+∞) = K ′ · [P ′(Q+ T +H ′)(S +G′)+Q′(P + S +G′)(T +H ′)]
c ≡ P3d(+∞) = K ′ · [S ′(T +H ′)(P ′ +Q′)+ P ′Q(S ′ + T ′)]
d ≡ P4d(+∞) = K ′ · [T ′(S +G′)(P ′ +Q′)+ PQ′(T ′ + S ′)] (34)

where the (F -independent) constantK ′ is determined by the normalization condition

a + b + c + d ≡ P1d(+∞)+ P2d(+∞)+ P3d(+∞)+ P4d(+∞) = 1 (35)

with all other asymptotic probabilities turning almost to zero in the above regime (27). With
that, we could already discuss the effect of the existence of our central system. We find it,
however, simpler to note that (34) is a solution (normalized to unity as in (35)) of the set
of equations
−P ′ −Q′ 0 P Q

0 −S ′ − T ′ S +G′ T +H ′
P ′ S ′ −P − S −G′ 0
Q′ T ′ 0 −Q− T −H ′



a

b

c

d

 = 0. (36)

One could also have derived these equations directly from (32). A proper normalization
condition (35), necessary for comparison with the limiting case, can be, however, deduced
only in the above limiting case of dominatingF (see the second inequality of (27)).

Let us, on the other hand, switch off our central system from our reservoir of particles
from the very beginning. This means we setG′, H ′ → 0 after neglecting0↑ in (22) (we
again use the notation (26)). Then all the asymptotic probabilities turn to zero except for
those in (35). Those which remain non-zero fulfill (in addition to (35)) the set of equations
to which (22) reduces, i.e.

−P ′ −Q′ 0 P Q

0 −S ′ − T ′ S T

P ′ S ′ −P − S ′ 0
Q′ T ′ 0 −Q− T



a

b

c

d

 = 0. (37)

Direct comparison of (36) with (37) shows that the presence of the central system means
an effective increase of transfer ratesS (for the transfer 3d → 2d) andT (for the transfer
4d → 2d) to S + G′ and T + H ′. Even without analysing our result (34) forG′ and
H ′ non-zero as compared with that forG′ andH ′ equal to zero, this is easily seen to
increase the asymptotic populationb ≡ P2d(+∞). This increase may be (whenG′ � S

andH ′ � T ) even appreciable. (In this connection, one should note that when the second
inequality of (27) applies, our central system works very fast, i.e. the rate of transfer of the
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pairs of particles to the bound state is given by the transfer rates of bringing the c and g
particles to it. The latter are nothing butG′ andH ′.)

One should also mention the following important facts following from (33).
• P2d(+∞) is always positive, owing to positive values ofP, P ′,Q, . . . , H ′. This fact

already follows from the structure of (22) as far as the relevant probabilities are initially
non-negative.
• P2d(+∞) remains finite in the zero-temperature limitT → 0, owing to non-zero

low-temperature limits ofP, P ′,Q, . . . , H ′.

5. Discussion

Thus, we have found that at low temperatures the occupation probability for the state|2d〉
becomes temperature insensitive, in contrast to the prediction of the standard Boltzmann
equilibrium statistics

P2d |equi∝ e−βV (38)

and (possibly even appreciably) enhanced by the presence of our central system working
as indicated. At intermediate temperatures limited from below, one can, on the one hand,
prove from (37) in the same way as in [15] that (38) applies well when|Im|, |Jm| and
|Km| are small enough (in this case, state|2〉 above becomes a real localized eigenstate of
the particles) andG′ = H ′ = 0. On the other hand, as follows from the above treatment,
our ‘daemon’ investigated here works with the rate which may be appreciable and is only
slightly temperature dependent and remains finite even atT = 0. This proves that our
central system may really play an active and important role in increasing appreciably the
population of the bound state (state|2〉) of our c and g particles. (ForV > 0, this state is
energetically unfavourable.) This opens at least two important questions.
• To which extent does this favourable situation change in the case of an infinite reservoir

of particles?
• Which is the source of energy needed to create, forV > 0, a bound and energetically

unfavourable state of our particles?
To answer these questions, let us return to our original HamiltonianH = HS+HB+HS−B

with (4)–(6). With the infinite reservoir of the c and g particles, i.e. an infinite number of
sites accessible, the presence of one single central system only should not change the
population ratio of the bound or scattering c–g states. This is irrespective of non-zero flow,
through states joined with the central system, to the manifold of the bound states. It is
easy to see that this is true because, in particular, the bath-assisted de-excitation processes
omitted here are connected with each site in the reservoir. Thus, they should integrally
certainly dominate over one, though perhaps strong, channel investigated above and which
‘sews’ the particles together. Including excitation and de-excitation processes assisted by
the thermodynamic bath and also running on each site in the particle reservoir then allows
the restoration of the temperature-activated form of populations (38). On the other hand,
even in an infinite reservoir of particles we have a non-zero effect of the presence of the
systems of the type of our central system, provided that their concentration (number relative
to the number of sites accessible for particles) remains finite. This is the way in which,
according to the above results, central systems of our type may, at their finite concentrations
csys, appreciably influence the amount of bound c and g particles.

As for the second question posed above, let us remember that, according to the above
arguments, the process of sewing the c and g particles together may, atV > 0, go up in
particle energy. The only source of energy accessible to compensate this particle-energy
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increase is the bath. One cycle of sewing is, roughly speaking and at low temperatures,
connected with two acts of the spontaneous emission of the bath excitations (phonons). This
would seemingly make the process prohibited by energy conservation law arguments. On
the other hand, we have already argued that we in fact need sufficiently fast dephasing in
our process destroying phase relations among our localized states|j, u〉 and |j, d〉. This is
possible due to the active and sufficiently strong interaction with the bath whengk 6= 0.
This interaction, however, implies multiple and intense absorption and emission of phonons
from the bath, which finally make the whole cycle energetically possible. As for the
rate of kinetics, the above mechanism also certainly yields additional acceleration of the
natural down-in-energy, bath-assisted processes wheneverV < 0. This is what may make
the above mechanism important as a source of unusual catalytic properties, even allowing
reactions which would be otherwise, in simple situations, on usual time scales and at finite
temperatures, hardly possible. Owing to the one-way and possibly cyclic character of the
process, the present mechanism of sewing particles together might have applications in
chain processes in biological systems.

Acknowledgment

The research has been partially sponsored by Komerčńı banka, Prague. The author is very
grateful for their support.

References
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[13] Čápek V 1993J. PhysiqueI 3 2229
[14] Dolderer H and Wagner M 1996J. Phys.: Condens. Matter8 6035
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